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ABSTRACT Recent studies on chronic viral infections have defined a novel pro-
grammed cell death 1-positive (PD-1�) T cell factor 1-positive (TCF1�) stem-like
CD8 T cell subset that gives rise to the terminally differentiated exhausted CD8 T
cells. In this study, we performed T cell receptor beta (TCR�) sequencing of
virus-specific CD8 T cells during chronic lymphocytic choriomeningitis virus
(LCMV) infection to examine the TCR diversity and lineage relationship of these
two functionally distinct subsets. We found that �95% of the TCR repertoire of
the exhausted CD8 T cell subset was shared with the stem-like CD8 T cells. The
TCR repertoires of both CD8 T cell subsets were composed mostly of a few dom-
inant clonotypes, but there was slightly more breadth and diversity in the stem-
like CD8 T cells than their exhausted counterpart (�40 versus �15 GP33� clono-
types; �20 versus �7 GP276� clonotypes). Interestingly, the breadth of the TCR
repertoire was broader during the early stages (day 8) of the chronic infection
than the later stages (days 45 to 60), showing that there was a narrowing of the
TCR repertoire during chronic infection (�2-fold GP33� and GP276� stem-like
subset; �10-fold GP33� and �5-fold GP276� exhausted subset). In contrast, dur-
ing acute LCMV infection, the TCR repertoire was much broader in both GP33-
specific effector (�160 clonotypes) and memory CD8 T cells (�160 clonotypes).
Overall, our data demonstrate that the virus-specific CD8 T cell TCR repertoire is
broad and remains stable after acute LCMV infection, but it contracts and is nar-
rower during chronic infection. Our study also shows that the repertoire of the
exhausted CD8 T cell subset is almost completely derived from the stem-like
CD8 T cell subset during established chronic LCMV infection.

IMPORTANCE CD8 TCR repertoires responding to chronic viral infections (HIV, hepa-
titis C virus [HCV], Epstein-Barr virus [EBV], and cytomegalovirus [CMV]) have limited
breadth and diversity. How these repertoires change and are maintained throughout
the chronic infection are unknown. We thus characterized the LCMV-specific CD8
TCR repertoires of stem-like and terminally exhausted subsets generated during
chronic LCMV infections. During chronic LCMV infections, the repertoires started as
diverse but became more clonal at the late time point. Further, the exhausted sub-
set was composed of dominant clonotypes that were shared with the stem-like sub-
set. Together, we demonstrate that the TCR repertoire contracts over time and is al-
most exclusively derived from the stem-like subset late during the persistent viral
infection. Our data suggest that dominant clonotypes in the exhausted subset are
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derived from a diverse pool of stem-like clonotypes, which may be contributing to
the clonality observed during chronic viral infections.

KEYWORDS chronic viral infection, T cell exhaustion, T cell immunity, T cell receptor,
lymphocytic choriomeningitis virus

CD8 T cells play a vital role in the antiviral response by recognizing and killing virally
infected cells through their T cell receptors (TCRs). If the antigenic stimulus is

cleared, as in an acute viral infection, a subset of the heterogenous pool of effector CD8
T cells will survive to become long-lived memory cells that are longitudinally main-
tained independently of TCR stimulation (1–5). In contrast, T cells that endure persistent
antigenic stimulation induced by chronic viral infection or cancer eventually become
dysfunctional or “exhausted.” T cell exhaustion is associated with the upregulation of
various inhibitory receptors, most notably programmed cell death 1 (PD-1) (6–8), and
can be defined as the subsequent inability of the immune system to completely clear
the antigen due to functional impairments (9–12). It is now appreciated that “ex-
hausted” CD8 T cells are a heterogenous population with regard to their gene expres-
sion profiles and dysfunctional states (13–16). This heterogeneity was definitively
outlined by the recent discovery of a novel subset of antigen-specific PD-1-positive
(PD-1�) T cell factor 1-positive (TCF1�) CD8 T cells that act as resource cells to sustain
virus-specific CD8 T cell responses during a chronic viral infection (17–20). These
self-renewing resource cells, henceforth called stem-like CD8 T cells, do not have
cytolytic activities but have proliferative potential. Upon TCR and costimulatory signals
(21), stem-like cells differentiate into terminally differentiated CD8 T cells, henceforth
called exhausted, which harbor limited proliferative and cytotoxic potential. In addition
to their transcriptional and epigenetic differences (17–19, 22), these two distinct
subsets differ greatly in their tissue distribution. During chronic lymphocytic chorio-
meningitis virus (LCMV) infection, stem-like CD8 T cells preferentially reside in special-
ized niches within lymphoid organs, while exhausted cells are present in both lymphoid
and nonlymphoid organs at sites of active infection (17, 23). Stem-like CD8 T cells have
been recently also detected in both murine and human cancers and have been shown
to play a vital role in antitumoral immunity (24–26). Importantly, stem-like CD8 T cells
provide the proliferative burst observed upon initiation of PD-1-targeted therapies. This
emphasizes the importance of these cells not only in maintaining CD8 T cell responses
in the presence of chronic antigen but also contributing greatly in the clinical context
of immunotherapy. However, the TCR relationships, as well as other characteristics of
the TCR repertoire, such as breadth and diversity, of the two functionally distinct
subsets are still unexplored. In this study, we used TCR beta (TCR�) sequencing of
LCMV-specific, tetramer-sorted CD8 T cells to study the diversity and lineage relation-
ship between stem-like and exhausted subsets during chronic LCMV infection.

RESULTS
LCMV-specific TCR repertoires show substantial overlap between stem-like and

exhausted CD8 T cells within mice. In this study, we investigated the TCR relationship
between stem-like and exhausted LCMV-specific CD8 T cells during chronic LCMV
infection by sequencing their TCR� locus. We employed a stringent chronic LCMV
infection model that results in lifelong viremia through transient depletion of CD4 T
cells at the time of infection with the LCMV clone 13 strain (9). At the chronic time point
(45 to 60 days postinfection [p.i.]) (Fig. 1a), PD-1-expressing LCMV GP33- and GP276-
specific CD73� Tim3-negative (Tim3�) stem-like CD8 T cells and CD73� Tim3� ex-
hausted CD8 T cells from the spleen and liver were sorted (Fig. 1b and c) (17) for TCR�

sequencing. We first assessed the overall overlap of the TCR repertoire between the
stem-like CD8 T cells and the exhausted CD8 T cells using the Morisita-Horn overlap
index. The Morisita-Horn overlap index measures the presence or absence of identical
TCR sequences and also incorporates the frequency of shared clones. An overlap index
of 0 corresponds to completely different repertoires, and 1 corresponds to identical
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repertoires. We observed that within individual mice, a high degree of overlap was
observed between stem-like and exhausted T cells in the spleen (Fig. 1d and e).
Furthermore, a comparable overlap was observed comparing the TCR repertoire of
exhausted T cells from the spleen and liver. These data support our previously estab-
lished lineage relationship model that stem-like CD8 T cells maintain the antiviral CD8
T cell response during a chronic infection by self-renewal and differentiation into the
exhausted T cell subset (17). The high overlap between the two subsets, as well as
exhausted cells from lymphoid and nonlymphoid organs at this time point, suggests
that the LCMV-specific TCR repertoire is derived from the stem-like subset. Further-
more, since the stem-like CD8 T cells are not present in nonlymphoid organs such as
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FIG 1 High clonal overlaps between the stem-like and exhausted subsets are observed within an individual mouse. (a) Serum viral load during chronic LCMV
infection. (b) Mice were sacrificed at days 45 to 60 p.i. to isolate LCMV-specific stem-like and/or exhausted CD8 T cells from the spleen and liver for TCR�
sequencing. (c) Antigen-specific stem-like and exhausted CD8 T cells were sorted using pMHC tetramers, Tim3, and CD73. (d and e) The Morisita-Horn index
was used to quantify the clonal overlap between the GP33-specific and GP276-specific stem-like (Stem) and exhausted (Exh) subsets within an individual mouse.
Shown are the mean and standard deviation (SD) from experiments with 4 mice.
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the liver at this time point (17), our data suggest that the differentiation of stem-like
CD8 T cells seeds the repertoire responding to systemic sites of infection.

LCMV-specific TCR repertoires are private among inbred mice. We then com-
pared the TCR repertoire overlap of virus-specific CD8 T cells between individual mice
using the Morisita-Horn overlap index. In both GP33� and GP276� CD8 T cell re-
sponses, we did not observe any significant overlap when comparing the TCR reper-
toires of virus-specific CD8 T cells between mice (Fig. 2a and b), while significant TCR
overlap was present within an individual mouse (Fig. 1d and e). These data demonstrate
that, despite analyzing inbred mice, individual GP33� and GP276� CD8 TCR repertoires
are primarily composed of private, nonshared clonotypes. The private nature of the
analyzed TCR repertoires (nonoverlapping TCR� amino acid sequences) thus requires
the separate analysis of individual TCR repertoires and does not allow pooling of
LCMV-specific CD8 T cells for TCR repertoire analysis.

Dominant clonotypes within the exhausted subset are shared with the stem-
like population. To address the question of how each clonotype contributed to the
repertoire in each of the subsets, we next analyzed the frequency distribution of every
unique clonotype in each subset within an individual mouse for GP33� (Fig. 3a) and
GP276� (Fig. 3b) CD8 T cells. The exhausted subset was more oligoclonal than the
stem-like subset, where the clones were more evenly distributed. Even though we
observed a skewing of a few dominant clones in the stem-like subset in mouse 4, these
dominant clones accounted for �60% of the stem-like repertoire versus �85% in the
exhausted subset (Fig. 3a). Conversely, 1 to 3 major clonotypes dominated the ex-
hausted repertoire in every mouse analyzed. These 1 to 3 dominant clonotypes within
the exhausted subsets were also present in the stem-like subset in significant propor-
tions (Fig. 3a). These data suggest that there is a bias toward certain dominant
clonotypes capable of responding to the viral infection.

We next determined the number of unique TCR clonotypes, or the richness, present
in each subset and accounting for 95% of detected sequences. Before assessing the
richness, it is important to note that the frequency of LCMV-specific stem-like CD8 T
cells in the spleen is �4-fold lower (10 to 30%) than the exhausted CD8 T cells (70 to
90%) (Fig. 1c) (17). Despite the lower cell numbers, both GP33� and GP276� stem-like
CD8 T cells displayed greater richness than the exhausted subsets in the spleen and
liver (Fig. 3c). The two exhausted subsets obtained from different organs showed
similar richness (Fig. 3c). Additionally, the GP276-specific repertoire was slightly (�1.5-
fold) less broad than the GP33-specific repertoire. Due to the increased richness in the
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FIG 2 LCMV-specific TCR overlaps are not observed between inbred mice. (a and b) The Morisita-Horn index was used to quantify
the clonal overlap of GP33-specific (a) and GP276-specific (b) CD8 T cells within and between individual mice. Stem-like and
exhausted subsets were compared within each individual mouse, and all possible pairwise comparisons between the stem-like and
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(all determined using Student’s t test).
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stem-like repertoire (Fig. 3c), we next asked what proportion of clonotypes in each
subset was shared among all 3 analyzed subsets (stem-like cells from the spleen as well
as exhausted cells from spleen and liver). In the GP276-specific repertoire, almost all
clonotypes detected were shared by all subsets, and in the GP33-specific repertoire,
�60 to 80% of the stem-like repertoire was composed of shared clonotypes (Fig. 3d).
These data suggest that the majority of the repertoire in the exhausted subsets are
derived from the stem-like subset and that there are unique stem-like clonotypes,
particularly in the GP33-specific repertoire, that are not detectable in the exhausted
subsets. We next wanted to quantify the evenness, or the diversity, of each repertoire
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by quantifying the cumulative frequencies of the top 5 clonotypes and the Simpson’s
D index, respectively. The top 5 clonotypes accounted for �80% of the stem-like subset
but �80% of the exhausted subset (Fig. 3e). Using Simpson’s D index, a diversity index
that incorporates the richness, evenness, and the frequency of each clone, we observed
that the greatest TCR diversity was evident in the stem-like subset (Fig. 3f). Together,
these data demonstrate that there is a high overlap of the TCR repertoires and a clear
clonal relationship between both subsets. Furthermore, it appears that the stem-like
repertoire is broader and more diverse than the exhausted subset during chronic viral
infection.

Virus-specific TCR repertoire diversity contracts during chronic viral infection.
Because the two subsets showed a high TCR overlap at a late time point when the
chronic infection was firmly established, we wanted to examine the repertoires early
(day 8 p.i.) during chronic viral infection when the peak of the antiviral CD8 T cell
response occurs (10, 27). We sorted tetramer-positive stem-like (CD73� Tim3�) and
exhausted (CD73� Tim3�) cells from spleen and liver 8 days after infection (Fig. 4a). We
first examined the distribution of individual clonotypes. The analysis of the clonotype
frequency distribution showed that in all analyzed mice, both subsets of GP33�, as well
as GP276�, CD8 T cells had a broad and evenly distributed TCR repertoire at this early
time point (Fig. 4b and c). No obvious dominant clonotypes (�30%) were present at
this early stage of chronic viral infection.

We next compared the TCR repertoires observed at early and late time points
postinfection in terms of the number of detected clonotypes and diversity and fre-
quency of shared clonotypes between subsets. The TCR repertoire was broader at the
early time point than the late time point (Fig. 4d). Importantly, there was a large
contraction of richness in all subsets of both specificities, especially the exhausted
subset (�4- to 10-fold) from early to the late time point (Fig. 4d). Although a striking
increase in the clonality (decrease in the diversity) of the exhausted subset was
observed between the two time points, no significant changes in diversity were
detected among stem-like subsets (Fig. 4e). Our data suggest that the diversity of the
stem-like subset seems to change minimally over time, whereas the diversity of the
exhausted subset diminishes over time.

We then wanted to address whether differences in the clonal overlap between the
two subsets were present between two time points. To answer this question, we
analyzed the cumulative frequency of the shared clonotypes present in all subsets (the
stem-like subset in the spleen and the exhausted subsets in the spleen and liver). The
cumulative frequencies of shared clonotypes were not different in the stem-like subsets
between the two time points (Fig. 4f). However, in the exhausted subset, the shared
clonotypes accounted for about 50% (GP33 specific) to 70% (GP276 specific) of the
repertoire 1 week after the infection, whereas at the later time point, the majority, if not
all, of the exhausted repertoire was composed of clonotypes derived from the stem-like
subset (Fig. 4f). These data suggest that there are unique clonotypes in the stem-like
subset that are not present in the exhausted subset both early and late during a chronic
infection. Furthermore, these data suggest that a wide breadth of naive precursors are
recruited during the initial antigen encounter but contract during chronic viral infec-
tions. Importantly, at the late time point, the vast majority of the TCR repertoire is
derived from the stem-like population acting as resource cells that maintain the CD8 T
cell response against the virus.

Comparison of TCR repertoire diversity between acute and chronic viral infec-
tion models. We next wanted to compare the TCR repertoire diversity between acute
and chronic LCMV infections. We thus infected mice with the LCMV Armstrong strain,
which is cleared within a week (Fig. 5a) and generates polyfunctional immune memory
(2, 10, 27, 28). This is in contrast to the chronic viral infection model where viral burden
is lifelong and canonical memory is not generated (27–29). The acute and chronic
strains of LCMV differ only by two amino acids in the glycoprotein and viral polymerase
but do not differ in their epitope specificities recognized by CD8 T cells (10, 30). Because
CD8 T cell epitopes are identical between the two contrasting strains, the LCMV model
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provides an ideal system to compare and contrast the LCMV-specific TCR repertoire in
an acute and chronic infection setting. We wanted to establish the repertoire in acutely
infected mice by sorting GP33-specific splenic CD8 T cells from a set of mice at the peak
of the effector phase (day 8 p.i.) and a set of different mice at a late memory time point
(7 months p.i.) after viral clearance (Fig. 5b). We first assessed the clonal overlap
between different mice and observed that the GP33-specific CD8 T cell repertoires were
private even during the acute infection (Fig. 5c). GP33-specific CD8 T cells obtained at
a late-memory time point retained a very broad TCR repertoire indistinguishable from
the TCR repertoire observed at the peak of the effector phase (Fig. 5d). When compar-
ing the clonality index, no significant changes in the diversity were observed between
the two time points (Fig. 5e). These data suggest that, although the CD8 T cell response
undergoes a major contraction (�90 to 95%) (31, 32) in terms of total cell numbers
during the formation of long-term memory, this contraction does not significantly
affect the breadth of the TCR repertoire. Furthemore, the number of unique GP33-
specific clonotypes (100 to 200) that are recruited and maintained are in line with the
previously reported GP33-specific naive precursor frequency (51–53).

Because the repertoire between the effector and memory phases were congruous,
we wondered how the TCR repertoires of LCMV-specific CD8 T cells responding to an
acute infection compared to those of a chronic infection. We first compared the
richness of GP33-specific CD8 T cells during acute and chronic LCMV infection. Even
early in a chronic infection, the stem-like and exhausted populations exhibited a
reduced TCR richness compared to both effector and memory populations following an
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acute infection (Fig. 6a). At the late time point, both the chronic stem-like and the
exhausted subsets showed reduced richness (5- to 10-fold) compared to the acute
response as well as the early chronic response (Fig. 6a). It is possible that both antigen
chronicity and chronic inflammation may play a role in reducing the breadth of the TCR
repertoire. In terms of the clonality measurement, no statistical differences were
observed between the acute effector, acute memory, and the chronic stem-like subsets,
but a dramatic increase in the clonality was observed in the exhausted subset at late
stages of chronic infection (Fig. 6b). Overall, these data demonstrate that even during
the early phase of a chronic viral infection, a narrowing of the repertoire of virus-specific
CD8 T cells can be observed and that chronic antigen stimulation drastically reduces
the breadth and increases the clonality of the exhausted TCR repertoire, which is
supported by the stem-like cells that maintain a diverse TCR repertoire over time.

DISCUSSION

T cell immunity is equipped with vast TCR specificities that allow responses to a wide
number of foreign and altered-self antigens. Because the TCR plays a crucial role in T
cell immunity, it is important to establish the clonal relationship between various CD8
T cell subsets that respond to antigenic stimulation. Using the murine model of chronic
LCMV infection, we demonstrate that PD-1� TCF1� stem-like CD8 T cells are clonally
related to the PD-1� TCF1� exhausted CD8 T cells. Despite analyzing the same epitope
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specificities in inbred mice, minimal TCR overlap was observed in LCMV-specific CD8 T
cells between different mice in both chronic and acute models. This suggests that a
highly private CD8 T cell repertoire is elicited against LCMV similar to those directed
against an influenza nucleic acid polymerase-derived epitope (33). It is thus important
to analyze individual TCR repertoire without pooling to prevent overestimation of
richness and misinterpretation of clonal overlap. Interestingly, at the late time point,
the stem-like subset exhibited a broader and more diverse TCR repertoire, with nearly
all of the clonotypes present in the exhausted subsets in both the spleen and the liver
being shared with the stem-like subset. At the earlier time point, the overlap between
the stem-like and the exhausted cells is lower. It is possible that there are unique
clonotypes in each subset. However, it is important to note that at this early time point,
the CD8 T cell response is derived from a very diverse pool of naive CD8 T cells, and
thus, lower overlap between the two subsets may be observed due to insufficient
sampling of the TCR repertoire. Overall, the confirmation of this clonal relationship
using TCR sequencing is important, as stem-like cells provide the proliferative burst
upon PD-1 blockade, and changes in the TCR repertoire of unknown specificities have
been used in the clinic to predict clinical outcome upon cancer immunotherapy
(34–37). Furthermore, it would be pertinent to study the TCR relationship between the
additional transitory CD8 T cell subset (38, 39) that emerges after PD-1 blockade and
the two subsets described herein.

Finally, our results demonstrate that chronic antigenic stimulation narrows the TCR
repertoire of antigen-specific CD8 T cells. This contraction is also observed in antigen-
specific CD8 responses against HIV, Epstein-Barr virus (EBV), cytomegalovirus (CMV),
and hepatitis C virus (HCV) in humans (40–47). The narrowing of the TCR repertoire was
observed most obviously in the exhausted subset where both the richness and the
diversity were dramatically reduced from early to late time points postinfection. The
stem-like subset did have a small decrease in the richness, but no significant decrease
in the diversity was observed over time. However, in an acute infection setting where,
after antigen clearance, activated CD8 T cells differentiate into long-lived memory cells
(48, 49), the TCR repertoire was very broad and diverse with no apparent differences in
the richness or the evenness over time, suggesting that the breadth and diversity of the
TCR repertoire is efficiently maintained during the contraction phase of an acute viral
infection.

Interestingly, even during the early phases of chronic viral infection, a reduction in
breadth was observed, which was followed by a loss of both richness and evenness,
particularly in the exhausted subset, as antigen persisted. This contraction observed
even at the early stages of LCMV Cl-13 compared to the Armstrong infection can be
explained by the differences in the initial antigen exposure. The Armstrong strain is
minimally disseminated and mostly cleared within the first week of infection. However,
the Cl-13 strain is highly disseminated with high viral loads that persist in multiple
organs (50). It would be of interest to study the TCR relationship between the stem-like
and exhausted CD8 T cell subsets in the CD4-helped model of LCMV Cl-13 specifically
after 4 to 6 weeks, when the mice start clearing the virus from many tissues.

Further investigation is needed to explain why dichotomous repertoire differences
exist early on between the acute and chronic models and why diversity differences
between the two clonally related subsets at the chronic phase of the infection are
observed. The contraction of diversity observed during chronic viral infection may be
due to the generation of clonotypes with differing capacity for persistence. The
differing capacity of clonotypes to persist in the presence of chronic antigen stimula-
tion may be linked to their intrinsic TCR affinity (46), induction of positive costimulatory
signals, and/or cytokine milieu in which they differentiate. Another possibility is that
stochastic recruitment, differentiation, and persistence of certain clonotypes contrib-
utes to the contraction of diversity across time in the setting of chronic antigen
stimulations (54). Deciphering the mechanisms contributing to the persistence of
specific clonotypes might provide novel insights and opportunities to improve the
efficacy of immunotherapeutic interventions. Overall, using a clonal relationship ap-
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proach, we confirmed in this study that stem-like CD8 T cells sustain the immune
response during a chronic antigen setting and that antigen chronicity results in a
contraction of the TCR repertoire, which is primarily observed in the exhausted subset.

MATERIALS AND METHODS
Mice and viruses. All animal experiments were performed in accordance with Emory University

Institutional Animal Care and Use Committee. C57BL/6J female mice were purchased from Jackson
Laboratory. Mice were infected with LCMV Armstrong strain (2 � 105 PFU, intraperitoneally [i.p.]) for
acute infection or with LCMV clone 13 strain (2 � 106 PFU, intravenously) after the transient depletion of
CD4� T cells by treatment with 300 �g anti-CD4 antibody (GK1.5 clone) i.p. twice, establishing a lifelong
chronic viral infection (9).

Flow cytometry, cell sorting, gDNA isolation, and TCR� sequencing. Surface staining was
performed using fluorochrome-conjugated antibodies against CD8, CD4, CD19, PD-1, Tim-3, CD73, and
CD44 in phosphate-buffered saline (PBS) containing 2% fetal bovine serum (FBS) on ice for 30 min. For
detecting LCMV-specific CD8 T cell responses, peptides bound to major histocompatibility complex
(pMHC) tetramers were prepared as described previously (32, 55). Cell viability was determined with the
Live/Dead fixable aqua dead cell stain kit (Invitrogen). Flow cytometric sorting was performed on a
FACSAria II (BD Biosciences). Lymphocytes from the spleen and liver were isolated as described
previously (10). Fluorescence-activated cell sorter (FACS) data were analyzed with FlowJo software
(TreeStar). The sorted cells were lysed, and genomic DNA (gDNA) was isolated using the QIAmp DNA
micro kit (Qiagen) according to the manufacturer’s instructions. The isolated gDNA was sent to Adaptive
Biotechnologies (Seattle, WA, USA) for TCR� sequencing.

TCR repertoire analysis. Complementarity determining region 3 (CDR3) sequences were called and
quantified using immunoSEQ analyzer (Adaptive Biotechnologies). Clonotype number, or richness, was
calculated as the number of clonotypes that made up 95% of the detected sequences. TCR overlap was
defined as two clonotypes that share identical CDR3 amino acid sequences. The Morisita-Horn index (56)
was used to quantify the clonal overlap as previously described. Simpson’s D (57) was used to quantify
the diversity of the repertoire as previously described, where D � 1 is monoclonal and D � 0 is
completely polyclonal.

Data analysis. All experiments were analyzed using Prism 8 (GraphPad Software). Statistical differ-
ences were assessed using a two-tailed unpaired or paired Student’s t test with 95% confidence interval.
P values of �0.05 indicated the significant difference between relevant groups.

Data availability. All TCR� sequencing data are publicly available through the immune ACCESS portal
via Adaptive Biotechnologies at https://doi.org/10.21417/YMC2020JV.
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